MathJax tutorial

字符

希腊字母

$\alpha$ $\beta$ $\gamma$ $\delta$ $\epsilon$ $\zeta$ $\eta$ $\theta$
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta
$\iota$ $\kappa$ $\lambda$ $\mu$ $\nu$ $\xi$ $\omicron$ $\pi$
\iota \kappa \lambda \mu \nu \xi \omicron \pi
$\rho$ $\sigma$ $\tau$ $\upsilon$ $\phi$ $\chi$ $\psi$ $\omega$
\rho \sigma \tau \upsilon \phi \chi \psi \omega
$\Gamma$ $\Delta$ $\Theta$ $\Lambda$ $\Xi$ $\Pi$ $\Phi$ $\Psi$
\Gamma \Delta \Theta \Lambda \Xi \Pi \Phi \Psi
$\Sigma$ $\Upsilon$ $\Omega$
\Sigma \Upsilon \Omega

运算符号

$\lt$ $\gt$ $\le$ $\ge$ $\neq$
\lt \gt \le \ge \neq
$\times$ $\div$ $\pm$ $\mp$ $\cdot$
\times \div \pm \mp \cdot
$\cup$ $\cap$ $\setminus$ $\subset$ $\subseteq$ $\subsetneq$
\cup \cap \setminus \subset \subseteq \subsetneq
$\supset$ $\in$ $\notin$ $\emptyset$ $\varnothing$ $\mid$
\supset \in \notin \emptyset \varnothing \mid
$\to$ $\rightarrow$ $\leftarrow$ $\Rightarrow$ $\Leftarrow$ $\mapsto$
\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto
$\land$ $\lor$ $\lnot$ $\forall$ $\exists$ $\top$ $\bot$ $\vdash$ $\vDash$
\land \lor \lnot \forall \exists \top \bot \vdash \vDash
$\star$ $\ast$ $\oplus$ $\circ$ $\bullet$ $\odot$
\star \ast \oplus \circ \bullet \odot
$\approx$ $\sim$ $\simeq$ $\cong$ $\equiv$ $\prec$ $\lhd$
\approx \sim \simeq \cong \equiv \prec \lhd
$\infty$ $\aleph_0$ $\nabla$ $\partial$ $\Im$ $\Re$
\infty \aleph_0 \nabla \partial \Im \Re
$\ldots$ $\ell$ $\epsilon$ $\varepsilon$ $\varphi$ $\lceil x \rceil$ $\lfloor x \rfloor$
\ldots \ell \epsilon \varepsilon \varphi \lceil x \rceil \lfloor x \rfloor

字体

  • blackboard bold: \mathbb or\Bbb $\mathbb {ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz}$
  • boldface: \mathbf $\mathbf {ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz}$
  • typewriter: \mathtt $\mathtt {ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz}$
  • roman font: \mathrm $\mathrm {ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz}$
  • sans-serif font: \mathsf $\mathsf {ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz}$
  • calligraphic: \mathcal $\mathcal {ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz}$
  • script:\mathscr $\mathscr {ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz}$
  • Fraktur:\mathfrak $\mathfrak {ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnpqrstuvwxyz}$

实例

A_i\cap A_2\cap \cdots\cap A_n=\underset{i=1}{\overset{n}\bigcap}A_i
$$A_i\cap A_2\cap \cdots\cap A_n=\underset{i=1}{\overset{n}\bigcap}A_i$$
A_1\cup A_2\cup \cdots\cup A_n=\underset{i=1}{\overset{n}\bigcup}A_i
$$A_1\cup A_2\cup \cdots\cup A_n=\underset{i=1}{\overset{n}\bigcup}A_i$$

1
2
3
4
5
6
7
8
9
10
\begin{align}
\overline {A\cap B} &= \{x\mid x\notin A\cap B\} \\
& =\{x\mid \lnot(x\in(A\cap B))\} \\
& =\{x\mid \lnot(x\in A\land x\in B)\} \\
& =\{x\mid \lnot (x\in A)\lor \lnot(x\in B)\}\\
& =\{x\mid x\notin A\lor x\notin B\}\\
& =\{x\mid x\in \overline{A}\lor x\in \overline{B}\} \\
& =\{x\mid x\in \overline{A}\cup\overline{B}\} \\
& =\overline{A}\cup\overline{B}
\end{align}

$$ \begin{align}
\overline {A\cap B} &= {x\mid x\notin A\cap B} \\
& ={x\mid \lnot(x\in(A\cap B))} \\
& ={x\mid \lnot(x\in A\land x\in B)} \\
& ={x\mid \lnot (x\in A)\lor \lnot(x\in B)}\\
& ={x\mid x\notin A\lor x\notin B}\\
& ={x\mid x\in \overline{A}\lor x\in \overline{B}} \\
& ={x\mid x\in \overline{A}\cup\overline{B}} \\
& =\overline{A}\cup\overline{B}
\end{align}
$$

1
2
3
4
5
f(n) =
\begin{cases}
\frac{n}{2}, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}

$$
f(n) =
\begin{cases}
\frac{n}{2}, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$

1
(x+y)^n=\sum_{j=0}^n\left(\begin{array}{c}n \\r\end{array}\right)x^{n-1}y^i

$$(x+y)^n=\sum_{j=0}^n\left(\begin{array}{c}n \\r\end{array}\right)x^{n-1}y^i$$

1
2
3
4
5
6
\left(
\begin{array}{c}
n \\
r
\end{array}
\right)

$$\left(\begin{array}{c}n \\r\end{array}\right)$$

1
2
f(x)=\begin{cases}x^2+5\qquad x<0\\
x^3+5x+6\qquad x>0 \end{cases}

$$f(x)=\begin{cases}x^2+5\qquad x<0\\ x^3+5x+6\qquad=""x="">0 \end{cases}$$
更多